針對PVC的耐熱研究,其中主要來自于PVC本身的結(jié)構(gòu)缺陷所影響。
PVC的年產(chǎn)量在四大通用合成樹脂(聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯)中,僅次于聚乙烯而居第二位。并且其具有比其他塑料更優(yōu)異性能特點(diǎn),比如難燃性、耐磨性、抗化學(xué)腐蝕性、氣體水汽低滲透性好。還有綜合機(jī)械性能、制品透明性、電絕緣性、隔熱、消聲、消震性也好,是性能價(jià)格比較為優(yōu)越的通用性材料。眾多優(yōu)點(diǎn)中但PVC存在結(jié)構(gòu)上的缺陷和不足,PVC熱穩(wěn)定性較差,PVC的熔融溫度約為200℃,在100℃分解放出氯化氫,高于150℃時(shí)分解加快。
加工過程易分解放出氯化氫,致使塑料制品變色、性能下降;通用PVC樹脂的維卡軟化點(diǎn)只有80℃左右,熱變形溫度在70℃左右。
同時(shí)這也缺點(diǎn)嚴(yán)重?fù)p害PVC的商品形象,限制其使用范圍和市場規(guī)模的進(jìn)一步擴(kuò)大。為改善擴(kuò)大PVC的使用范圍與性能,較先運(yùn)用小分子增塑劑來改善加工性,但是增塑劑易于在加工和使用過程發(fā)生熔出和遷移,不但會(huì)污染環(huán)境,同時(shí)使得制品使用價(jià)值喪失。
為克服上述缺點(diǎn),相繼開發(fā)出各種助劑,如ABS、MBS、CPE、ACR。助劑添加基本上解決PVC的抗沖性和加工性的問題,但耐熱的問題仍未得到實(shí)質(zhì)性解決。例如建筑業(yè)中,耐熱性的好與壞是由于外部因素(光、水、日光、建筑強(qiáng)度的要求等等)決定的,通常的情況下PVC材料耐熱性差,產(chǎn)品在日光的曝曬下易引起熱膨脹,使材料產(chǎn)生變形和裂縫,造成嚴(yán)重的質(zhì)量問題。當(dāng)其運(yùn)用在溫水管材料時(shí),由于軟化、變形和破裂導(dǎo)致其無法使用。PVC樹脂另一大缺陷是耐沖擊性差,由于耐沖擊性差,在安裝和切斷時(shí),材料容易破損,同時(shí)使用過程中的制品也因?yàn)榕鲎捕鴵p壞。
為了提高其抗沖性,國內(nèi)公司研究院研制開發(fā)了PVC抗沖劑,解決了PVC的抗沖問題。為進(jìn)一步拓寬PVC的使用范圍,擴(kuò)大PVC的市場規(guī)模 ,在PVC抗沖劑的研制基礎(chǔ)上,又開始提高PVC維卡軟化點(diǎn)耐熱改性劑的研制工作。
本文主要內(nèi)容為介紹和針對共混改性耐熱聚氯乙烯的制備研究。闡述共混改性過程兩種具體而又簡單物理共混過程,還有化學(xué)交聯(lián)和輻射交聯(lián)過程。顧名思義兩種方式的過程中的變化是不同的,其中簡單的物理共混,就是將各種填料和高耐熱型的樹脂加入其中得到具有更好耐熱性能的PVC 樹脂。另外一種就是將簡單的化學(xué)反應(yīng)引入到PVC 大分子鏈中,對其進(jìn)行接枝與交聯(lián)反應(yīng)。
其中輻射交聯(lián)屬于將樹脂在放射源下破壞其分子鏈達(dá)到目的。輻射交聯(lián)是較早采用PVC 交聯(lián)方法之一 ,也是使用較廣泛的交聯(lián)方法。多國已用此法生產(chǎn)輻射交聯(lián)的PVC 絕緣電線。
普通PVC 材料通過輻射并不發(fā)生交聯(lián),則主要發(fā)生脫氯化氫反應(yīng)與降解反應(yīng),產(chǎn)生共扼雙鍵使品變色。Rnenr 與Miler 較早先發(fā)現(xiàn),多官能團(tuán)不飽和單體能強(qiáng)化PVC 輻射下的交聯(lián)反應(yīng),使得PVC 輻射交聯(lián)成為可能。多官能團(tuán)不飽和單體主要包括三羥甲基丙烷三甲基丙烯酸醋(TMPTMA)、三羥甲基丙烷三丙烯酸醋 (TMPTA)、三烯丙基異腈尿酸酯(TAIC)、三烯丙基腈尿酸酯(TAC)、二甲基丙烯酸四甘醇酯(TEGDM)、二丙烯酸四甘醇酯 (TEGDA)、二縮三丙二醇二丙烯酸酯(TPGDA)、二丙二醇二丙烯酸酯(DPGDA)等。
PVC 輻射交聯(lián)一般以60Co-γ射線或高能電子(EB)射線為輻照源、多官能團(tuán)不飽和單體為交聯(lián)劑, 交聯(lián)反應(yīng)為自由基反應(yīng),PVC 在輻射作用下C-CI 鍵斷裂, 形成自由基活性中心, 多官能團(tuán) 不飽和單體在輻射引發(fā)下優(yōu)先產(chǎn)生 自由基并 自聚,同時(shí)接枝到PVC 長鏈自由基上, 基本的交聯(lián)結(jié)構(gòu)PVC-(交聯(lián)劑)-PVC 。 VKSHARMA 人等采用電子束(BE)輻射交聯(lián)軟PVC, 研究3種交聯(lián)劑—TMPTA 、TEGDM 及TEGDA 對軟PVC 的交聯(lián)速率及熱穩(wěn)定性能的影響, 以三鹽基硫酸鉛(BTSL)作為體系的穩(wěn)定劑。結(jié)果表明,5%TMPTA的交聯(lián)效果較好, 當(dāng)凝膠質(zhì)量分?jǐn)?shù)60%時(shí), 其拉伸強(qiáng)度達(dá)到23.5MPa ,較未交聯(lián)時(shí)提高7%左右,同時(shí)交聯(lián)軟PVC 的體積電阻系數(shù)、分解溫度也能夠得到明顯的提高。Ratnam 等采用同樣的輻射交聯(lián)方法, 采用TMPTA 交聯(lián)硬PVC, 以TBSL 作為體系的穩(wěn)定劑, 研究輻射劑量在20-200kGy 時(shí), 其凝膠含量與硬PVC 的拉伸強(qiáng)度、硬度的關(guān)系同時(shí)測定了輻射劑量在l00kGy 時(shí)的Tg, 并通過FTIR 分析證實(shí)了通過電子束輻射的方法能夠有效地避免降解反應(yīng)的發(fā)生。研究發(fā)現(xiàn), 當(dāng)輻射劑量100kGy 時(shí), 其凝膠質(zhì)量分?jǐn)?shù)達(dá)到85% ,此時(shí)交聯(lián)硬PVC 的Tg 較未交聯(lián)試樣提高2.5℃。同時(shí), 通過對輻射交聯(lián)硬PVC 的性能研究表明, 采用適當(dāng)用量 ( 4 % )的交聯(lián)劑交聯(lián)的硬PVC 試樣的拉伸強(qiáng)度、硬度都得到明顯提高, 當(dāng)凝膠質(zhì)量分?jǐn)?shù)達(dá)到80%時(shí), 其拉伸強(qiáng)度達(dá)到較大值5MPa ,較未交聯(lián)時(shí)提高30%。此時(shí), 硬 PVC的硬度也提高13%左右, 并隨著凝膠質(zhì)量分?jǐn)?shù)的增加呈不斷上升的趨勢。
PVC 的輻射交聯(lián)是非常復(fù)雜的反應(yīng), 主要包PVC 交聯(lián)、降解、脫HCI 等。各種因素對PVC 輻射交聯(lián)的影響都是通過影響三者間的競爭關(guān)系來實(shí)現(xiàn)的。PVC 輻射交聯(lián)反應(yīng)過程受多種因素影響:輻射劑量、輻射溫度、反應(yīng)氛圍、交聯(lián)劑、增塑劑、填料與加工助劑。輻射交聯(lián)法與化學(xué)交聯(lián)法相比具有很多優(yōu)點(diǎn), 在電線電纜行業(yè)中得到廣泛應(yīng)用。輻射交聯(lián)P VC產(chǎn)品性能優(yōu)異, 且生產(chǎn)效率高, 節(jié)省能源, 無環(huán)境污染。隨著人們對環(huán)境問題的關(guān)注及輻射技術(shù)的進(jìn)步,PVC 輻射交聯(lián)技術(shù)必將越來越引起人們的注意。
一.聚氯乙烯耐熱共混的研究
針對耐熱樹脂CPVC 的共混研究,通常PVC 的耐熱性能較低,人們想到將其氯化得到的產(chǎn)物就是CPVC 。得到的CPVC 在耐熱性能上較PVC 來說溫度有所提升,但在價(jià)格上和加工性能上較貴,具體加工中的分解溫度下,往往分解的過程會(huì)產(chǎn)生大量的氯化氫氣體,降解影響更大且對機(jī)器的損傷更大。另一個(gè)方面將其與PVC 進(jìn)行共混時(shí),溫度相對于單純的PVC 樹脂料來說,溫度提升明顯。當(dāng)CPVC 與PVC 比例小于1:3時(shí)溫度基本無變化、當(dāng)其比例超過1:3時(shí)溫度得到明顯提升、其比例超過1:1時(shí)溫度得到迅速提升。如果反過來想,如果將CPVC 作為主要樹脂來說,加入一定量的PVC 得到的合成可以對比與上述的共混具有更大的耐熱效果。 PVC樹脂經(jīng)氯化,含氯量(質(zhì)量分?jǐn)?shù)) 由56-79%提高61%-68%時(shí),CPVC 玻璃化溫度、軟化溫度和熱變形溫度上升。CPVC 維卡軟化溫度可比PVC 樹脂提高20-400℃PVC 硬管制品安全使用溫度不超過60℃,而CPVC 硬管制品可在接近100℃溫度下長期使用。因此,CPVC 是能在較高溫度和較高內(nèi)壓下長期使用的為數(shù)不多的聚合物之一;CPVC 的抗拉強(qiáng)度比PVC 提高百分之五十一左右;CPVC 也具有優(yōu)異的耐化學(xué)藥品性,尤其是在較高溫度下,CPVC 仍有很好的耐一酸、耐堿、耐化學(xué)藥品性,其耐腐蝕性能遠(yuǎn)高于PVC 和其他樹脂;CPVC 具有優(yōu)異的阻燃自熄性,它比一般PVC 樹脂有更好的耐燃性;CPVC 具有較低的熱傳導(dǎo)率,用CPVC 制成的耐熱管道可免除隔熱護(hù)層。
比較經(jīng)典的耐熱共混是將MBS 和ABS 作為分別單一的組分進(jìn)行共混,由于兩種和PVC 的相容性較差,混合過程中加入一些其他助劑幫助混合的相容性更好,更加有利于生產(chǎn)和物質(zhì)性質(zhì)的表現(xiàn)。盡管解決其中的問題,但對于主要目的耐熱性而言比較差,相對與原來單純的樹脂還是有所提高的。對于這類的物質(zhì)來說本身就是一個(gè)大分子的聚合物將其填充到PVC 料中,過程往往很簡單,但是量過于大時(shí)得到的產(chǎn)物會(huì)具有分相的結(jié)果,導(dǎo)致加工與對原來物性影響較大。且PVC/ABS維卡軟化溫度隨ABS 的加入量基本成正比例提高, 但由于 ABS 樹脂含有不飽和雙鍵, 其熱穩(wěn)定性及抗氧性不良, 故須加入一些起保護(hù)作用的抗氧劑及鉛鹽類熱穩(wěn)定劑。
馬來酰亞胺(MI )類共混,具體開始于上個(gè)世紀(jì)。單純的馬來酰亞胺(MI )類共混具體包括兩種馬來酰亞胺(MI )物質(zhì):N一苯基馬來酸亞胺((PhMI) N一環(huán)己基馬來酸亞胺(ChMI)馬來酰亞胺(MI)及其衍生物是一類剛性耐熱單體, 能夠進(jìn)行自聚, 其均聚物開始熱失重溫度為220~400℃ ,是一種耐熱高分子材料。
在N-取代馬來酰亞胺中N-苯基馬來酰亞胺(PhMI)和N-環(huán)己基馬來酰亞胺(ChMI)是兩種重要的樹脂改性劑, 前者的改性效果好, 成本相對較低, 后者的熔點(diǎn)較低, 在聚合物和單體中的溶解性好, 可用于聚氯乙烯樹脂的耐熱改性。具體方法之一是將N —取代馬來酰亞胺與氯乙烯共聚制得N —取代馬來酰亞胺共聚改性PVC 樹脂。這種樹脂的綜合性能比通用PVC 和CPVC 要好得多。比如N —環(huán)已烷取代馬來酰亞胺共聚改性PVC 樹脂中的N —環(huán)已烷取代馬來酰亞胺的含量每增加1%,其熱變形溫度將增加1℃, 并且不影響其加工性能。另外就是將其合成以N —取代馬來酰亞胺、MMA 、苯乙烯、丙烯腈等為主要成分的共聚物, 作為提高熱變形溫度的改性劑, 將其與PVC 共混以提高PVC 的使用溫度。
這種改性劑的主要成分也是N —取代馬來酰亞胺和MMA, 不同之處在于N —取代馬來酰亞胺的含量高達(dá)60%以上, 在100份通用PVC 中每添加1份該改性劑可使樹脂的維卡軟化點(diǎn)提高1.5℃。一般說來, 采用共聚方法改性的PVC 樹脂其熱變形溫度雖然高, 但是成型加工時(shí)的熱穩(wěn)定性較差。而采用共混的方法改性PVC 樹脂時(shí), 若要大幅度地提高樹脂的耐熱性, 必然要犧牲其加工性和抗沖性。
為了解決這些矛盾, 日本油脂股份有限公司采取了接枝共聚的方法, 也就是在N —取代馬來酰亞胺聚合物的存在下, 進(jìn)行氯化聚氯乙烯的聚合。這樣N —取代之間既有相互交叉貫穿的物理混合, 又有接枝共聚的化學(xué)結(jié)合, 與共聚改性PVC 樹脂和共混改性PVC 樹脂具有完全不同的內(nèi)在結(jié)構(gòu)。
為了改善耐熱PVC 樹脂透明性, 日本合成橡膠股份有限公司將PVC 與用乳液聚合法制得的N —取代馬來酰亞胺、苯乙烯、MMA 三元共聚物以及粒徑在0.3μm 以下的橡膠含量為45%~80%的MMA 改性ABS 共混, 得到了透明性、耐熱性、抗沖性綜合性能良好的樹脂。例如, 由55份PVC, 35份MMA-St-ChMI(25∶35∶40) 三元共聚樹脂, 和10份MMA 改性ABS 樹脂組成的共混料可擠塑成制品的抗沖性、透明性與通用PVC 相當(dāng)是其熱變形溫度卻提高了近20℃。
馬來酸酐類的共混是將馬來酸酐與苯乙烯等單體的共聚物(SMA)得到是一種性能優(yōu)異的耐熱改性劑。SMA 的聚合方法有溶液聚合、本體聚合及本體-懸浮聚合法。合成方法對SMA 的熱性能影響很大。采用本體聚合可得到具有較佳熱性能、高分子質(zhì)量SMA 。由于SMA 分子中含有羰基和五元環(huán)上的一個(gè)孤對電子的氧, 不但提高SMA 的耐熱性, 還可與聚氯乙烯樹脂發(fā)生相互作用, 促進(jìn)了相容性, 因此SMA/PVC共混物具有較高的耐熱性、沖擊性和加工性。
20世紀(jì)80年代, 美、德、日等國先后針對聚氯乙烯合金的耐熱性、熔體粘度等缺陷, 開展了SMA/PVC合金的研究開發(fā)工作。當(dāng)聚氯乙烯和SMA 共混時(shí), 隨著SMA 含量的增加, 共混合金的耐熱性變好, 其負(fù)荷下的耐熱變形溫度高達(dá)85℃以上, 比硬質(zhì)聚氯乙烯樹脂的耐熱變形溫度提高了5~8℃, 維卡軟化點(diǎn)提高了12℃, 降低了熔融粘度, 提高了熔融流動(dòng)性。在SMA 含量一定的情況下, 隨著MA 含量的增加, 合金的動(dòng)態(tài)熱穩(wěn)定性能也有所提高。近年來, 美國孟山都公司開發(fā)了以SMA 為基礎(chǔ)的耐熱改性劑Elix300, 在聚氯乙烯中添加30%的SMA 可使維卡軟化點(diǎn)提高到104℃。PVC 100份、SMA 110份、有機(jī)錫4份、硫醇鹽2份混合而成組合物, 其維卡軟化點(diǎn)為113℃,220℃的炭化時(shí)間為20 min, 而純的PVC 和穩(wěn)定劑的組成物只有82℃和10 min。此外還可用橡膠改性SMA, 再與PVC 混合, 例如Doak 的兩篇專利(US4469844、US4551500) 所得混合物的熱變形溫度可達(dá)88℃, 同時(shí)還有較高的沖擊強(qiáng)度。另外,EnBACO(乙烯-丙烯酸酯-一氧化碳共聚物) 及EnBACO-g-MAH(EnBACO接枝馬來酸酐) 作為增容劑。馬來酸酐與苯乙烯等單體的共聚物(SMA)是一種性能優(yōu)異的耐熱改性劑。
無機(jī)填料的共混則和CPVC 的共混類似,簡單的加入其中,但是不同的是CPVC 是有機(jī)的樹脂可以不用過多的考慮其相容性的問題。對比與無機(jī)的填料來說加入其中的量的多少、不同是形狀、不同的粒徑大小等等都會(huì)影響到后期的加工和產(chǎn)品的使用上面,往往來說其中無機(jī)量的大小也影響到了企業(yè)的成本的關(guān)鍵問題。CaCO 3、凹凸棒土及BaSO 4等無機(jī)填料一般均有較高的熔融溫度,將其與 PVC共混可以在一定程度上提高PVC 的耐熱性,而且無機(jī)填料具有來源廣、價(jià)格低廉及性能穩(wěn)定等優(yōu)點(diǎn),在工業(yè)中得以廣泛應(yīng)用。雖然無機(jī)填料能改善 PVC的耐熱性能,但其與PVC 樹脂的相容性差,添加量過多時(shí),PVC 樹脂大分子的取向被打破,容易產(chǎn)生銀紋、裂紋等缺陷,拉伸強(qiáng)度、彎曲強(qiáng)度和沖擊強(qiáng)度均有不同程度降低。
比較多數(shù)的添加無機(jī)填料有:單純的碳酸鈣共混及、碳酸鈣經(jīng)鈦酸酯偶聯(lián)劑處理(CaCO3+CPE+PVC)體系、改性CaCO3使其成為具有核殼結(jié)構(gòu)、N. Shimpi 等選用不同粒徑的納米CaCO3制 備PVC/CaCO3復(fù)合材料,并研究了不同粒徑的納米CaCO3在PVC 中的分散性及對復(fù)合材料耐熱性能和力學(xué)性能的影響。結(jié)果表明,當(dāng)選用9nm 的納米CaCO3填充時(shí),復(fù)合材料的性能較佳。在PVC/CPE共混體系中加入經(jīng)鈦酸酯偶聯(lián)劑處理后的碳酸鈣可明顯改善原體系的強(qiáng)度, 當(dāng)碳酸鈣的填充量達(dá)到15份和30份時(shí), 體系的維卡軟化點(diǎn)可分別達(dá)到93℃和120℃。硅酸鹽類包括凹凸棒、云母、高嶺土(SFKF)、高嶺土。
國內(nèi)選用凹凸棒土填充硬質(zhì)PVC ,研究不同含量的凹凸棒土對PVC 耐熱性能的影響。結(jié)果表明,當(dāng)凹凸棒土含量由 0 增加到 10 份時(shí),共混物的微卡溫度由74.3℃上升到86.5℃;當(dāng)凹凸棒土含量超過 10 份時(shí),共混物的微卡溫度下降,耐熱性變差。L.M.Matuana 分別將未改性的鈉基蒙脫土(Na–MMT) 和有機(jī)改性的蒙脫土(Org–MMT) 在 PVC成型的四個(gè)不同階段與PVC 共混, 制備PVC/層狀硅酸鹽納米復(fù)合材料。結(jié)果表明,在成型中的熔融階段添加填料時(shí),PVC/層狀硅酸鹽納米復(fù)合材料的熱穩(wěn)定性較佳;PVC/Na–MMT 復(fù)合材料比 PVC/Org–MMT 復(fù)合材料有更好的熱穩(wěn)定性。國內(nèi)實(shí)驗(yàn)室考察不同長度和用量的GF (玻璃纖維)對PVC 耐熱性的影響。結(jié)果表明, 長度為50mm 的GF 對PVC 材料的改性效果明顯好于長度為 3mm的GF ;當(dāng)50 mm 長的GF 含量由0份增加到20份時(shí),復(fù)合材料的維卡溫度由 86.8℃升高到 113.4℃,耐熱性得到了很大提高。硫酸鹽類包括BaSO4和 CaSO4 。例如PVC/甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物(MBS)/納米 BaSO4三元復(fù)合材料。
二.聚氯乙烯交聯(lián)耐熱的研究
從前文中介紹到通過輻射交聯(lián)制備具有耐熱性能較好的PVC 材料。但其中遠(yuǎn)遠(yuǎn)不是想象之中的簡單的輻照即可,對于簡單的輻射加上一般的PVC 料往往得到的是降解的PVC ,具體為其中碳鏈中氯脫去外觀的表現(xiàn)為色質(zhì)的變化泛黃。通過前人的探索PVC 的輻射交聯(lián)中一般加入多功能團(tuán)的不飽和單體,來將其中打開的鍵位進(jìn)行連接,從而得到性質(zhì)較好的耐熱PVC 材料。
過氧化物的交聯(lián)同輻射交聯(lián)的來源不同,輻射交聯(lián)來自于放射源的能量使得鍵位打開,將不飽和單體的官能團(tuán)引入。相對于過氧化物來說,其實(shí)就是通過過氧基團(tuán)打開碳鏈中的鍵位,然后將自己接枝在大分子PVC 鏈上,后自己將其各個(gè)分子鏈連接起來,得到具有交聯(lián)的PVC 物料。對于一般的過氧化物來說為有機(jī)類的過氧化合物,優(yōu)點(diǎn)對PVC 的加工和其性能的影響較小,而且可以達(dá)到耐熱樹脂的要求。
以上3種自由基中,(B)更容易引發(fā)沿PVC 大分子鏈的脫HCI 反應(yīng), 造成PVC 的降解與著色。
三嗪化合物的交聯(lián)與硅烷偶聯(lián)劑的交聯(lián),兩者大都情況是通過硅烷親核取代反應(yīng), 取代 PVC大分子鏈上的氯原子,從而在PVC 大分子鏈上引人可水解的硅烷基團(tuán), 然后經(jīng)水解反應(yīng)制備交聯(lián) PVC 。在硅烷的分子結(jié)構(gòu)(R-Si-(OCH3) 3)中,R 取代基團(tuán)的結(jié)構(gòu)是影響接枝和交聯(lián)反應(yīng)的主要因素,R 是含琉基或氨基的烷基。有研究表明 , 鉛鹽穩(wěn)定劑可使琉基硅烷的琉基轉(zhuǎn)變?yōu)楦哂H核能力的硫負(fù)離子 , 從而使接枝反應(yīng)得以發(fā)生除采用琉基硅烷法交聯(lián)PVC 外。同時(shí)也要考慮影響交聯(lián)速率和結(jié)構(gòu)的因素有:PVC的配方、硅烷的結(jié)構(gòu)和用量、穩(wěn)定劑種類和用量、增塑劑含量和水解催化劑含量、加工溫度、加下時(shí)間等;水解交聯(lián)條件,包括水解交聯(lián)環(huán)境、時(shí)間和溫度等。對于三嗪化合物則可以采用二琉基三嗪化合物制得交聯(lián)PVC 多琉基化合物通過琉基的親核取代作用 , 分別奪取PVC 分子鏈上的活潑氯原子, 接枝在PVC 上的多琉基化合物通過琉基將不同PVC 分子鏈連接起來, 形成交聯(lián)網(wǎng)絡(luò)。Gilber 等則對氨基硅烷交聯(lián)PVC 進(jìn)行了研究,探討了水解交聯(lián)條件對交聯(lián)動(dòng)力學(xué)(凝膠含量隨時(shí)間的變化) 的影響,結(jié)合水?dāng)U散過程的影響,得到交聯(lián)反應(yīng)速率常數(shù);同時(shí)研究了硅烷交聯(lián)劑含量、混煉溫度和時(shí)間、穩(wěn)定體系等對交聯(lián)程度和產(chǎn)物性能的影響,得到了耐熱性能良好的軟、硬質(zhì)PVC 。
上述的交聯(lián)反應(yīng)是通過加入過氧化合物、硅烷偶聯(lián)劑、三嗪化合物或者輻射條件下的得到的交聯(lián)產(chǎn)物,往往得到的性能較為優(yōu)異、結(jié)構(gòu)穩(wěn)定。但缺點(diǎn)也十分明顯,所得到的交聯(lián)物質(zhì)往往結(jié)構(gòu)非常穩(wěn)定,對于產(chǎn)品后期的回收加工業(yè)非常的繁瑣,幾乎不能得到二次的利用,對資源也是非常的浪費(fèi)。隨著發(fā)展的趨勢上述方法往往會(huì)被淘汰,隨之后來的方法會(huì)對熱可逆交聯(lián)得到了發(fā)展的契機(jī)。現(xiàn)在對于熱可逆交聯(lián)主流有5個(gè)方向異氰酸脂與活潑H 的反應(yīng)體系、吖內(nèi)脂與苯酚體系、Diels-Alder 反應(yīng)體系、酸酐與醇的脂化反應(yīng)體系、季銨化反應(yīng)體系。其中研究較為廣泛兩種Diels-Alder 反應(yīng)體系與季銨化反應(yīng)體系,Diels-Alder 反應(yīng)體系通過環(huán)戊二烯(CPD )的Diels-Alder 反應(yīng)合成了含有端環(huán)戊二烯基的硫醇鹽,將其作為既可以取代聚合物鏈上氯原子,又可通過環(huán)戊二烯的Diels-Alder 反應(yīng)的可逆性作為可以使含氯聚合物室溫交聯(lián)、高溫解交聯(lián)的交聯(lián)劑。與烯丙基氯反應(yīng),抑制其著色,起到了一定的穩(wěn)定作用, 同時(shí)利用雙環(huán)戊二烯(DCPD)與環(huán)戊二烯(CPD)的熱可逆轉(zhuǎn)變特性,制備了遇熱可解交聯(lián)的熱可逆共價(jià)交聯(lián)型軟PVC 。
季銨化反應(yīng)體系通過二胺的烷基化反應(yīng), 制備了不同鏈長的二叔胺, 利用二叔胺與聚氯乙烯(PVC)鏈上的活性氯形成季銨鹽離子鍵的反應(yīng), 制備了具有離子型熱可逆交聯(lián)特性的 PVC。PVC 的熱分解往往是從活性很高的烯丙基氯或者叔氯的脫氯釋放HCl 開始的, 叔胺具有可以與活潑氯反應(yīng)生成含氯季銨鹽的特性。
本研究合成的二叔胺為端叔胺, 均可以與PVC 活性氯反應(yīng), 實(shí)現(xiàn)不同高分子鏈間的交聯(lián), 這種季銨鹽離子型交聯(lián)對溫度敏感, 具有在材料的使用溫度下處于交聯(lián)狀態(tài), 在塑煉加工溫度下受熱解交聯(lián)的熱可逆特性, 故而有著良好的塑煉加工能力。
胺類物質(zhì)對交聯(lián)后對PVC 物性的影響隨著加入份數(shù)的增加, 對PVC 的斷裂伸長率有明顯影響不同的胺類物質(zhì)增加至不同的份數(shù)時(shí), 斷裂伸長率均達(dá)到極大值, 說明此時(shí)交聯(lián)比較充分, PVC鏈上的烯丙基活性Cl 基本上與交聯(lián)劑反應(yīng)完全;當(dāng)交聯(lián)劑份數(shù)繼續(xù)增加時(shí), 由于未參與交聯(lián)反應(yīng)的胺物質(zhì)可能對PVC 起到了誘導(dǎo)分解作用, 反而使其降低。還有由于分子鏈的碳原子數(shù)較多, 分子鏈較長, 有更高的自由度, 與活性Cl 有更充分的結(jié)合機(jī)會(huì)。PVC 被交聯(lián)后能有效地阻止高分子鏈的滑脫和樣品中微裂縫的擴(kuò)展, 使斷裂伸長率明顯提高。另外,隨著交聯(lián)劑用量的增加,PVC 的斷裂強(qiáng)度有所提高。胺類物質(zhì)為交聯(lián)劑時(shí),試樣的斷裂強(qiáng)度比未交聯(lián)試樣提高。隨著交聯(lián)劑到達(dá)合適量時(shí),試樣的斷裂強(qiáng)度提高??梢娊宦?lián)劑種類和用量不同, 對試樣斷裂強(qiáng)度的影響程度不同。
反應(yīng)溫度的控制因素, 提高反應(yīng)溫度能提高凝膠含量, 但是對于PVC 的加工特性, 溫度過高, 會(huì)出現(xiàn)熱分解, 導(dǎo)致試樣老化、變色。應(yīng)采用高溫短時(shí)間或者是溫度稍低, 使塑化時(shí)間加長。在一定的塑化溫度范圍內(nèi), 延長反應(yīng)時(shí)間, 可以使凝膠含量明顯增加, 說明延長反應(yīng)時(shí)間有利于交聯(lián)反應(yīng)。在塑化時(shí)間一定時(shí), 交聯(lián)產(chǎn)物的凝膠量與塑化溫度存在密切關(guān)系, 隨著溫度的提高,凝膠含量明顯增加。
較后,對于PVC 的耐熱研究,兩種大的方向都具有各自的優(yōu)點(diǎn),和自己的弊端。針對簡單的共混過程比較具有操作性、原理簡單、價(jià)格優(yōu)勢高;而對于交聯(lián)的過程則相對較復(fù)雜些比如在理論上、實(shí)踐的操作性上、原料的合成上相對復(fù)雜些。隨著資源的拮據(jù)產(chǎn)生,往往會(huì)加入許多的回收料,對原有原料的性質(zhì)就產(chǎn)生了更大的影響,后期工作更加艱巨。加之PVC 屬于老牌的化工產(chǎn)品,各種工藝的生產(chǎn)都有很大的市場,然而PVC 的耐熱問題一直存在,兩種方向有著優(yōu)點(diǎn)。現(xiàn)在已經(jīng)許多實(shí)驗(yàn)室將兩個(gè)方向融合起來,從加工和后期工作中進(jìn)行工作、還有通過將耐熱助劑也加入到樹脂中來促進(jìn)其余PVC 的相容性來使得PVC 具有更加的耐熱性能。提到世界石油的緊張對于現(xiàn)在的發(fā)展趨勢就是將熱可逆交聯(lián)的原理運(yùn)用到PVC 的行業(yè)中,但還有解決許多的問題。
無錫嘉弘塑料科技有限公司擁有近30年的PVC粒料的研發(fā)、造粒生產(chǎn)經(jīng)驗(yàn)。專業(yè)技術(shù)服務(wù)團(tuán)隊(duì)可為客戶提供一站式系統(tǒng)解決方案。如想了解更多關(guān)于產(chǎn)品的信息,歡迎登錄我們的官網(wǎng)∶m.dglzdz.com,咨詢在線客服或撥打熱線。固話:0510-68755207 手機(jī):15190220696,我們將竭誠為您服務(wù)。
(免責(zé)聲明: 本站內(nèi)收錄的所有教程與資源均來自于互聯(lián)網(wǎng),其版權(quán)均歸原作者及其網(wǎng)站所有,本站雖力求保存原有的版權(quán)信息,但由于諸多原因,可能導(dǎo)致無法確定其真實(shí)來源,請?jiān)髡咴?!如果您對本站教程與資源的歸屬存有異議,請立即通知小編,情況屬實(shí),我們會(huì)較早時(shí)間予以刪除。)